Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions.

نویسندگان

  • L M Schmid
  • M G Rosa
  • M B Calford
  • J S Ambler
چکیده

The effect of discrete monocular retinal lesions on the representation of the visual field in the primary visual area (V1) was investigated in adult cats. Lesions were created using argon lasers, 8 d to 4(1/2) months prior to electrophysiological recording. This produced lesion projection zones (LPZs) in V1, 1.6-9.5 mm wide, that were deprived of their normal input from one eye, but that received a normal input from the other eye. Nevertheless, at the majority of recording sites within these zones neuronal responses were elicited by stimulation of the lesioned eye, with receptive fields being displaced onto regions of retina surrounding the lesion, while receptive fields determined through stimulation of the normal eye followed the normal visuotopic organization of V1. However, neuronal responses to stimulation of the lesioned eye within the LPZs were characterized by rapid habituation and unusually low firing rates in comparison with responses to stimulation of the normal eye. Stimulation of the normal eye temporarily marked the responsiveness of neurons within the LPZ to stimulation of the lesioned eye. The proportion of neurons responsive to stimulation of the lesioned eye was higher just inside the borders of the LPZs than at the centers of these zones. However, neurons responsive to stimulation of the test eye were found up to 3.6 mm from the perimeter of the LPZs, and therefore the shifts in the visuotopic map caused by retinal lesions cannot be explained solely on the basis of the normal scatter of receptive fields and point-image size in V1. The proportion of cells responsive to stimulation of the lesioned eye was highest in the infragranular layers, and lowest in the supragranular layers. By combining a restricted lesion of one eye with laser photocoagulation of the optic disc of the other eye, the effects of the normal eye on the lesion-induced visuotopic reorganization were also investigated. Neither chronic nor acute deactivation produced any discernible further changes in visuotopy or in the characteristics of neuronal responses to stimulation of the eye with the discrete lesions. Our findings show that the representations of the two eyes in adult visual cortex are capable of independent reorganization. These findings parallel those of work in auditory cortex, suggesting that topographic reorganization in primary sensory areas of adult cortex may be governed by similar mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topographic reorganization in area 18 of adult cats following circumscribed monocular retinal lesions in adolescence.

Circumscribed laser lesions were made in the nasal retinae of one eye in adolescent cats. Ten to sixteen months later, about 80 % of single neurones recorded in the lesion projection zone (LPZ) of contralateral area 18 (parastriate cortex, area V2) were binocular but when stimulated via the lesioned eye had ectopic discharge fields (displaced to normal retina in the vicinity of the lesion). Alt...

متن کامل

Strabismus disrupts binocular synaptic integration in primary visual cortex.

Visual disruption early in development dramatically changes how primary visual cortex neurons integrate binocular inputs. The disruption is paradigmatic for investigating the synaptic basis of long-term changes in cortical function, because the primary visual cortex is the site of binocular convergence. The underlying alterations in circuitry by visual disruption remain poorly understood. Here ...

متن کامل

تاثیر هم افزایی دوچشمی بر مولفه های موج پتانسیل برانگیخته بینایی

  Background : To determine the effect of binocular summation on the time domain transient VEP wave's components.   Methods : The monocular and binocular transient visual evoked potentials of 21 normally vision volunteers 18 to 24 years (mean ± SD, 20.7 ± 1.9) during a reversing checkerboard stimulus with spatiotemporal frequency of 2.18-4 cpd-Hz were recorded. The amplitude and latency of N75,...

متن کامل

Title: A Computational Model of Perceptual Fill-in Following Retinal Degeneration

The ablation of afferent input results in the reorganization of sensory and motor cortices. In the primary visual cortex (V1), binocular retinal lesions deprive a corresponding cortical region (the lesion projection zone, LPZ) of visual input. Nevertheless, neurons in the LPZ regain responsiveness by shifting their receptive fields (RFs) outside the retinal lesions; this reemergence of neural a...

متن کامل

Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.

Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance plasticity in rodents, led us to re-examine whether adu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 1996